Comparing two state-of-the-art models, MOZART-3.1 and GMI Combo

Daeok (Danny) Youn

"Professor Don Wuebbles Group"

Department of Atmospheric Sciences, University of Illinois at
Urbana-Champaign

GMI Science Team Meeting October 11-13, 2006 Greenbelt, MD

MOZART is a community model

Development: NCAR, NOAA/GFDL, MPI-Meterology (UIUC is also a partner in the MOZART team)

A community tool capable of:

- □ Understanding the influence of chemical and transport processes on the global distribution of chemical compounds in the atmosphere.
- □ Quantifying the global and regional budgets of these compounds.
- □ Assisting in the interpretation and assimilation of various measurements.
- □ Predicting the evolution of the atmospheric composition in response to natural and human-induced perturbations

Current Versions

MOZART-2.4: Tropospheric version (Horowitz et al., 2003)

MOZART-3.1: An extension of MOZART-2 into stratosphere and mesosphere

MOZART-4: An updated version of MOZART-2.4, including a number of improvements

MOZART Frame

Chemistry Module for MOZART-3

106 species; 260 thermal, 66 photolytic and 18 heterogeneous reactions for whole atmosphere

- 1. Middle Atmosphere: detailed neutral chemistry model
- 50 Species; 118 Gas Phase, 50 Photolysis, 18 Heterogeneous Reactions
 Ox, HOx, NOx, ClOx, and BrOx Chemical families + CH₄ chemistry
 Heterogeneous processes on 4 aerosol types: liquid binary sulfate (LBS), supercooled ternary solution (STS), nitric acid tri-hydrates (NAT), and water-ice aerosols
- 2. Troposphere: updated from the MOZART-2

Ox, NOx, HOx, CH4, C2H6, C3H8, C2H4, C3H6, more detailed HCs improvements to tropospheric NMHC reaction mechanism

I Gas-phase and photolytic reactions can be modified through the model preprocessor and STUV-based LUT generator. ▶ **I**

Met. Fields for MOZART

Hybrid (p- σ) or σ -Coorinate

992.5561hPa

original resolution of Met. Fields!

Otherwise, Met. fields need to be interpolated to the predefined MOZART resolution!

Time-Latitude Crossections of Total Column Ozone [DU]

- ➤ Both simulations show reasonable agreement with observation, but MOZART+WACCM1b has higher values over higher TO3 regions.
- >GMI Combo + FVGCM output shows generally lower values than observations.

Stratospheric Column Ozone (16-48 km) [DU]

- **►MOZART3.1** + WACCM1b : higher stratospheric column O3 => ?
- **>GMI Combo + FVGCM : lower stratospheric column O3**

Latitude-Height sections of zonal-mean O₃ [ppm]

Adjusted j-values to be consistent with our 2-D model

Latitude-Height sections of zonal-mean CH₄ [ppm]

- **▶**Both simulations have narrow tropical pipe (steep horizontal gradient at the subtropics).
- **>GMI Combo + FVGCM : smaller vertical gradient in the upper stratosphere.**

Latitude-Height sections of zonal-mean N₂O [ppm]

▶ General pattern of CH4 and N2O distributions, followed by B-D circulation, are in agreement with observations.

Latitude-Height sections of zonal-mean H₂O [ppm]

Latitude-Height sections of zonal-mean HCl[ppbv]

Latitude-Height sections of zonal-mean HNO₃[ppbv]

Latitude-Height sections of zonal-mean ClO [ppbv]

What to do more

Compare the simulations derived with same meteorological fields including FVGCM, and possibly WACCM3 and ECMWF for better comparison.

Compare near-troposphere region (UT/LS Region) using more available observations from satellites, aircrafts, and radiosonde.